Monday 25 February 2013

PREDICATES AND QUANTIFIERS


  • Predicate- true,false (proposition that contain variable)

        P(x)= X>0

  • Quantification express the extent to which a predicate is true over a 

         range of elements
         x>0
         x= true
         x=false

  • Universal Quantifiers

        P(x) is true for every x in the universe of 
        discourse.
        "xP(x)
        
        Eg:U={1,2,3}
        "xP(x) óP(1) Ù P(2) Ù P(3)

  • Existensial Quantifiers

        P(x) is true for some x in the universe of 
        discourse
        $xP(x)
       
        ‘There is an x such that P(x),’For some x,
         P(x)’,’For at least one x,
   
        P(x)’,’I can find an x such that P(x)’.
       
       Eg: U={1,2,3}
       $xP(x)óP(1) Ú P(2) Ú P(3)

  • Unique Existensial

        P(x) is true for one and only are x in the 
        universe of discourse
       $!xP(x)
        
       ‘There is a unique x such that P(x),’
        There is one and only one x such
        that P(x)’,’One can find only 
        one x such that P(x).’
        
        Eg:U={1,2,3}
        
        Truth Table:
        P(1)   P(2)   P(3)   $!xP(x)
0       0       0       0
0       0       1       1
0       1       0       1
0       1       1       0
1       0       0       1
1       0       1       0
1       1       0       0
1       1       1       0




EXAMPLE OF APPLICATION IN LIFE:

UNIVERSAL



EXISTENSIAL



UNIQUE





PROPOSITIONAL LOGIC


  • Definition: A proposition is a declarative sentences that is either true or false.


  • Example: X + 2 = 5


  • Truth Table:

 NEGATION 
P
¬ P
TRUE
FALSE
FALSE
TRUE




CONJUNCTION
P
Q
P ˆ Q
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
TRUE
FALSE
FALSE
FALSE
FALSE




DISJUNCTION
P
Q
P  ˇ  Q
TRUE
TRUE
TRUE
TRUE
FALSE
TRUE
FALSE
TRUE
TRUE
FALSE
FALSE
             FALSE            




EXCLUSIVE DISJUNCTION
P
Q
P     Q
TRUE
TRUE
FALSE
TRUE
FALSE
TRUE
FALSE
TRUE
TRUE
FALSE
FALSE
FALSE




IMPLICATION
P
Q
P            Q
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
TRUE
TRUE
FALSE
FALSE
TRUE





BI-IMPLICATION
P
Q
          P              Q
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
TRUE
FALSE
FALSE
FALSE
TRUE


PROPOSITIONAL EQUIVALENCES


Before we proceed, we must first understand the terms and operators used in this topic.
   
PROPOSITION is the statement that 
is either true or false.
        
COMPOUND PROPOSITION is the 
statement that is formed using 
logical operators.



Propositional Equivalences

Tautology is compound proposition that is always true.

p
¬p
p v ¬p
TRUE
FALSE TRUE
FALSE TRUE TRUE



Contradiction is compound proposition that is always false.

p
¬p
p Λ ¬p
TRUE
FALSE FALSE
FALSE TRUE FALSE



Contigency is proposition that is neither tautology nor contradiction.

Logical equivalent: two compound propositions that have the same truth value.
Example:
If it rains then I stay at home.
If I do not stay at home, then it does rain.


Applications of logical equivalent are:
  •  De Morgan Law
  •  Distributive Law